Selasa, 21 Juni 2011

Menentukan Kaki dan Jenis Transistor dengan Multitester Digital

Syarat untuk menentukan kaki (basis, emitor, dan kolektor) dan jenis (PNP atau NPN) sebuah transistor dengan menggunakan AVO meter atau multimeter atau multitester digital, adalah multitester tersebut harus memiliki fitur test dioda. Fitur pengetesan ini biasanya dilambangkan dengan simbol dioda, seperti yang terlihat pada gambar multitester dibawah ini.

multimeter-dengan-dioda-tester

Menentukan Kaki dan Jenis Transistor dengan AVO meter Analog

Hampir semua AVO meter analog (Ampere, Volt, dan Ohm meter, seperti yang terlihat pada gambar dibawah) bisa kita gunakan untukmenentukan kaki dan jenis (PNP atau NPN) transistor. Namun yang perlu diperhatikan pada alat ukur jarum ini, kenop putar harus pada posisi pengetesan Ohm meter atau daerah simbol Ω.

avometer-jarum-analog
Contoh kali ini kita akan mengukur transistor tipe FCS9015, yang cukup banyak digunakan, dan tidak ada dalam tabel data transistor sinyal kecil . Sehingga kita sama-sama belajar menentukan kaki dan jenis transistor FCS9015, dan langkahnya hampir mirip dengan menggunakan multitester digital, yaitu:

Transistor Sebagai Saklar


Aplikasi transistor tidak hanya dibatasi pada penguatan sinyal saja. Tetapi dapat juga diaplikasikan sebagai sebuah saklar (switch) pada komputer atau peralatan kontrol lainnya. Saat transistor berada dalam kondisi saturasi, berarti transistor tersebut merupakan saklar tertutup dari kolektor ke emitor. Jika transistor tersumbat (cut off) berarti transistor seperti sebuah saklar yang terbuka”.
Rangkaian switching transistor ditunjukkan pada gambar berikut ini :


Minggu, 19 Juni 2011

Penggunaan Transformator

Banyak peralatan listrik di rumah yang menggunakan transformator step down. Trafo tersebut berfungsi untuk menurunkan tegangan listrik PLN yang besarnya 220 V menjadi tegangan lebih rendah sesuai dengan kebutuhan. Sebelum masuk rangkaian elektronik pada alat, tegangan 220 V dari PLN dihubungkan dengan trafo step down terlebih dahulu untuk diturunkan. Misalnya kebutuhan peralatan listrik 25 V. Jika alat itu langsung dihubungkan dengan PLN, alat itu akan rusak atau terbakar. Namun, apabila alat itu dipasang trafo step down yang mampu mengubah tegangan 220 V menjadi 25 V, alat itu akan terhindar dari kerusakan. Ada beberapa alat yang menggunakan transformator antara lain catu daya, adaptor, dan transmisi daya listrik jarak jauh. gb128
a. Power supply (catu daya)
Catu daya merupakan alat yang digunakan untuk menghasilkan tegangan AC yang rendah. Catu daya menggunakan trafo step down yang berfungsi untuk menurunkan tegangan 220 V menjadi beberapa tegangan AC yang besarnya antara 2 V sampai 12 V

Transformator (Trafo)

Di rumah mungkin kamu pernah dihadapkan persoalan tegangan listrik, ketika kamu akan menghidupkan radio yang memerlukan tegangan 6 V atau 12 V. Padahal tegangan listrik yang disediakan PLN 220 V. Bahkan generator pembangkit listrik menghasilkan tegangan listrik yang sangat tinggi mencapai hingga puluhan ribu volt. Kenyataannya sampai di rumah tegangan listrik tinggal 220 V. Bagaimanakah cara mengubah tegangan listrik? Alat yang digunakan untuk menaikkan atau menurunkan tegangan AC disebut transformator (trafo). Trafo memiliki dua terminal, yaitu terminal input dan terminal output. Terminal input terdapat pada kumparan primer. Terminal output terdapat pada kumparan sekunder. Tegangan listrik yang akan diubah dihubungkan dengan terminal input. Adapun, hasil pengubahan tegangan diperoleh pada terminal output. Prinsip kerja transformator menerapkan peristiwa induksi elektromagnetik. Jika pada kumparan primer dialiri arus AC, inti besi yang dililiti kumparan akan menjadi magnet (elektromagnet). Karena arus AC, pada elektromagnet selalu terjadi perubahan garis gaya magnet. Perubahan garis gaya tersebut akan bergeser ke kumparan sekunder. Dengan demikian, pada kumparan sekunder juga terjadi perubahan garis gaya magnet. Hal itulah yang menimbulkan GGL induksi pada kumparan sekunder. Adapun, arus induksi yang dihasilkan adalah arus AC yang besarnya sesuai dengan jumlah lilitan sekunder.gb125

Penerapan Induksi Elektromagnetik pada Industri

Pada induksi elektromagnetik terjadi perubahan bentuk energi gerak menjadi energi listrik. Induksi elektromagnetik digunakan pada pembangkit energi listrik. Pembangkit energi listrik yang menerapkan induksi elektromagnetik adalah generator dan dinamo. Di dalam generator dan dinamo terdapat kumparan dan magnet. Kumparan  atau  magnet  yang  berputar  menyebabkan  terjadinya perubahan jumlah garis-garis gaya magnet dalam kumparan. Perubahan  tersebut  menyebabkan  terjadinya  GGL  induksi  pada kumparan.  Energi  mekanik  yang  diberikan  generator  dan  dinamo diubah ke dalam bentuk energi gerak rotasi. Hal  itu menyebabkan GGL  induksi  dihasilkan  secara  terus-menerus  dengan  pola  yang berulang secara periodik
1.   Generator Generator dibedakan menjadi dua, yaitu generator arus searah (DC) dan generator arus bolak-balik (AC). Baik generator AC dan generator  DC  memutar  kumparan  di  dalam  medan  magnet  tetap. Generator AC sering disebut alternator. Arus listrik yang dihasilkan berupa  arus  bolak-balik.  Ciri  generator  AC  menggunakan  cincin ganda. Generator arus DC, arus yang dihasilkan berupa arus searah. Ciri  generator  DC  menggunakan  cincin  belah  (komutator).  Jadi, generator  AC  dapat  diubah  menjadi  generator  DC  dengan  cara mengganti cincin ganda dengan sebuah komutator.

Induksi Elektromagnetik by myvstain_mblitarian

Listrik dalam era industri merupakan keperluan yang  sangat  vital.  Dengan  adanya transformator, keperluan  listrik  pada  tegangan  yang  sesuai  dapat terpenuhi. Dahulu untuk membawa  listrik diperlukan kuda.  Kuda   (pada   gambar)   sedang  membawa pembangkit  listrik  untuk  penerangan  lapangan  ski. Seandainya  transformator  belum  ditemukan,  berapa ekor  kuda  yang diperlukan untuk penerangan  sebuah kota? Fenomena pemindahan listrik akan kamu pelajari pada  bab  ini.  Pada  bab  ini  kamu  akan  mempelajari pemanfaatan kemagnetan dalam produk  teknologi.
Pretest
1.  Bagaimanakah cara membuat elektromagnetik?
2.  Apakah kegunaan galvanometer?
3.  Berilah contoh alat yang dapat mengubah energi gerak menjadi energi listrik !
Kata-Kata Kunci
–  arus induksi
–   generator
–  dinamo
–  GGL  induksi
–  efisiensi transformator
–  transformator
–  fluks magnetik
–  transmisi daya listrik

Kamis, 16 Juni 2011

Harmonic Distortion

Sering kita mendengar istilah distorsi harmonik (Hamonic Distortion) dalam keseharian. Bentuk gelombang yang terdistorsi atau mengalami distorsi harmonik bisa seperti dibawah ini. Gelombang seperti ini bisa terlihat dengan mempergunakan osciloscope. Sebenarnya gelombang tersebut adalah resultan dari beberapa gelombang sinus dengan frekuensi yang berbeda beda dengan sebuah gelombang utamanya. Untuk bisa melihat beberapa frekuensi harmonic yang menyusunnya dipergunakan spectrum analyzer. Jadi bisa diumpamakan sebagai berikut, jika melihat gelombang dengan osiloscope seakan melihat dari samping sedangkan dengan spectrum analyzer dari depan.

Daya Dan Tegangan Pada Capacitor Bank

Perubahan Daya Capacitor Bank karena Tegangan Line
Seringkali ditemukan penggunaan komponen dengan spesifikasi yang tidak 100 % mengikuti spesifikasi yang tertulis. Ini dikarenakan pada spesifikasi dicantumkan pada kondisi yang berbeda dengan keadaan di lapangan yang ada. Misal pada penggunaan komponen capacitor, di spesifkasi tertulis 50 kVAR // 415 VAC pada jaringan dengan tegangan 380 V. Hal ini sangat dimungkinkan, namun akan terjadi beberapa perubahan pada komponen tersebut.
Output daya capacitor akan turun jika terpasang pada tegangan yang lebih rendah dari tegangan spesifikasi.
Q(eff) = Qn (V1/Vn)^2
dimana :
Q(eff) : Daya reaktif capacitor pada tegangan V1 ( kVAR )
Qn     : Daya reaktif capacitor pada tegangan Vn ( kVAR )
V1    : Tegangan pada jaringan ( Volt )
Vn    : Tegangan pada spesifikasi komponen ( Volt )
Contoh :
Capacitor dengan daya 50 kVAR // 415 V terpasang pada jaringan 380 V
Q(eff)    = 50 kVAR ( 380/415 ) ^2
            =  41.92 kVAR

Pemilihan Kabel dan Fuse pada Capacitor

Besar kabel penghantar dan fuse capacitor harus dihitung berdasarkan spesifikasi. Arus capacitor biasanya tertulis di spesifikasi barang atau bisa dihitung dengan sbb :
I(n)     = 1000 Q(n) / 1.73 V
dimana :
I(n)        : Arus Capacitor (Amp)
Q(n)      : Daya Capacitor (kVAR)
V          : Tegangan Capacitor (Volt)
Fuse yang dipergunakan untuk menjaga overcurent 1,6 sampai 2 kali I(n).
Kabel harus disesuaikan dengan arus dan dinaikan sampai 30% untuk mengantisipasi adanya hamonisa.
Untuk lebih memudahkan berikut ini tabel ukuran fuse dan kabel pada beberapa ukuran capacitor.

Kompensasi power faktor dengan Kapasitor Bank

Pada dasarnya setiap mesin tu diciptakan untuk merubah energi.. sadarkah anda? kenapa bisa demikian?

Dilihat dari sudut pandang bidang ketenaga listrikan, terdapat dua point utama:

1. “Active“ Energy atau yang lebih populer disebut daya aktif, yang terukur pada kWh meter (P), digunakan untuk merubah energi listrik menjadi energi mekanik dan panas.
2. “Reactive” Energy atau yang lebih beken disebut dengan daya reaktif (Q), diperlukan untuk beban-beban induktif seperti motor, transformer dan lain sebagainya.




Diagram penyaluran energi listrik ke beban

“Efisiensi tenaga listrik dari sebuah sistem instalasi, di ukur dengan faktor daya/cos phi“

dimana:

PF= active power/apparent power = P (kW)/S (kVA) = cos phi

Pada sistem sinosudial, cos phi mengindikasikan tingkat dari daya reaktif yang dikonsumsi oleh beban. Berikut adalah rata-rata pengaruh tingkat pembebanan beban induktif terhadap power faktor:




Perbandingan pembebanan beban induktif terhadap power faktor

“Lho, kenapa kok pada saat beban penuh motor asinkron power faktornya tambah bagus? bukannya motor asinkron itu beban induktif-nya gede?”

Begini… Daya reaktif (Q), dibutuhkan oleh beban-beban induktif seperti diatas, jika beban tersebut dimanfaatkan secara maksimal, maka hasilnya juga maksimal, karena daya reaktif terpenuhi.. lihat point 2 pada mukadimah diatas. ini dia perbandingannya :




Perbandingan efisiensi konsumsi daya reaktif beban-beban induktif


Pada artikel ini telah dibahas pengertian dari daya dan faktor daya pada jaringan listrik. Perbaikan faktor daya dapat dilakukan dengan cara kompensasi kapasitif menggunakan kapasitor. 

Referensi :
* Understanding power quality,B.Gridwood,Energy Mad Ltd.
* Understanding power and power quality measurement,–,http://www.transcat.com.
* Understanding power factor,–,http://www.princetongreen.org


Oleh Ahmad Musta'in

PEMAHAMAN FAKTOR DAYA

MEMAHAMI FAKTOR DAYA

Ahmad Musta'in

Istilah faktor daya atau power factor (PF) atau cos phi merupakan istilah yang sering sekali dipakai di bidang-bidang yang berkaitan dengan pembangkitan dan penyaluran energi listrik. Faktor daya merupakan istilah penting, tidak hanya bagi penyedia layanan listrik, namun juga bagi konsumen listrik terutama konsumen level industri. Penyedia layanan listrik selalu berusaha untuk menghimbau konsumennya agar berkontribusi supaya faktor daya menjadi lebih baik, pun para konsumen industri juga berusaha untuk mendapatkan faktor daya yang baik agar tidak sia-sia bayar mahal kepada penyedia layanan. Apakah sebenarnya yang dimaksud dengan faktor daya? Tulisan ini akan membahas secara ringkas tentang faktor daya.

Faktor daya
Pada pembahasan kali ini, asumsi yang digunakan adalah sistem listrik menggunakan sumber tegangan berbentuk sinusoidal murni dan beban linier. Beban linier adalah beban yang menghasilkan bentuk arus sama dengan bentuk tegangan. Pada kasus sumber tegangan berbentuk sinusoidal murni, beban linier mengakibatkan arus yang mengalir pada jaringan juga berbentuk sinusoidal murni. Beban linier dapat diklasifikasikan menjadi 4 macam, beban resistif, dicirikan dengan arus yang sefasa dengan tegangan; beban induktif, dicirikan dengan arus yang tertinggal terhadap tegangan sebesar 90^0; beban kapasitif, dicirikan dengan arus yang mendahului terhadap tegangan sebesar 90^0, dan beban yang merupakan kombinasi dari tiga jenis tersebut, dicirikan dengan arus yang tertinggal/mendahului tegangan sebesar sudut, katakan, \phi. Gambar 1 menunjukkan tegangan dan arus pada berbagai beban linier.



Gambar 1. Tegangan, arus, daya, pada berbagai jenis beban linier.


Seperti kita tahu, pada listrik, daya bisa diperoleh dari perkalian antara tegangan dan arus yang mengalir. Pada kasus sistem AC dimana tegangan dan arus berbentuk sinusoidal, perkalian antara keduanya akan menghasilkan daya tampak (apparent power), satuan volt-ampere (VA)) yang memiliki dua buah bagian. Bagian pertama adalah daya yang termanfaatkan oleh konsumen, bisa menjadi gerakan pada motor, bisa menjadi panas pada elemen pemanas, dsb; daya yang termanfaatkan ini sering disebut sebagai daya aktif (real power) memiliki satuan watt (W) yang mengalir dari sisi sumber ke sisi beban bernilai rata-rata tidak nol. Bagian kedua adalah daya yang tidak termanfaatkan oleh konsumen, namun hanya ada di jaringan, daya ini sering disebut dengan daya reaktif (reactive power) memiliki satuan volt-ampere-reactive (VAR) bernilai rata-rata nol. Untuk pembahasan ini, arah aliran daya reaktif tidak didiskusikan saat ini. Beban bersifat resistif hanya mengonsumsi daya aktif; beban bersifat induktif hanya mengonsumsi daya reaktif; dan beban bersifat kapasitif hanya memberikan daya reaktif.

Untuk memahami istilah “daya termanfaatkan” dan “daya tidak termanfaatkan”, analogi ditunjukkan pada Gambar 2. Pada analogi tersebut, orang menarik kereta ke arah kiri dengan memberikan gaya yang memiliki sudut terhadap bidang datar, dengan asumsi kereta hanya bisa bergerak ke arah kiri saja tetapi tidak bisa ke arah selainnya. Gaya yang diberikan dapat dipecah menjadi dua bagian gaya yang saling tegak lurus, karena kereta berjalan ke kiri maka gaya yang “bermanfaat” pada kasus ini hanyalah bagian gaya yang mendatar sedangkan bagian gaya yang tegak lurus “tidak bermanfaat”. Dengan kata lain, tidak semua gaya yang diberikan oleh si orang terpakai untuk menggerakkan kereta ke arah kiri, ada sebagian gaya yang diberikannya namun tidak bermanfaat (untuk menggerakkan ke arah kiri). Apabila dia menurunkan tangannya hingga tali mendatar maka semua gaya yang dia berikan akan termanfaatkan untuk menggerakan kereta ke arah kiri.




Gambar 2. Analogi: Usaha untuk menggerakkan kereta ke arah kiri.


Sama halnya dengan listrik, bergantung pada kondisi jaringan, daya tampak yang diberikan oleh sumber tidak semuanya bisa dimanfaatkan oleh konsumen sebagai daya aktif, dengan kata lain terdapat porsi daya reaktif yang merupakan bagian yang tidak memberikan manfaat langsung bagi konsumen. Rasio besarnya daya aktif yang bisa kita manfaatkan terhadap daya tampak yang dihasilkan sumber inilah yang disebut sebagai faktor daya. Ilustrasi segitiga daya pada Gambar 3 memberikan gambaran yang lebih jelas. Daya tampak (S) terdiri dari daya aktif (P) dan daya reaktif (Q). Antara S dan P dipisahkan oleh sudut \phi, yang merupakan sudut yang sama dengan sudut \phi antara tegangan dan arus yang telah disebutkan di awal. Rasio antara P dengan S tidak lain adalah nilai cosinus dari sudut \phi. Apabila kita berusaha untuk membuat sudut \phi semakin kecil maka S akan semakin mendekat ke P artinya besarnya P akan mendekati besarnya S. Pada kasus ekstrim dimana \phi = 0^0, cos \phi=1, S=P artinya semua daya tampak yang diberikan sumber dapat kita manfaatkan sebagai daya aktif, sebaliknya \phi = 90^0, cos \phi=0 S=Q artinya semua daya tampak yang diberikan sumber tidak dapat kita manfaatkan dan menjadi daya reaktif di jaringan saja.

Faktor daya = cos \phi = \frac{P (W)}{S (VA)}



Gambar 3. Segitiga daya


Faktor daya bisa dikatakan sebagai besaran yang menunjukkan seberapa efisien jaringan yang kita miliki dalam menyalurkan daya yang bisa kita manfaatkan. Faktor daya dibatasi dari 0 hingga 1, semakin tinggi faktor daya (mendekati 1) artinya semakin banyak daya tampak yang diberikan sumber bisa kita manfaatkan, sebaliknya semakin rendah faktor daya (mendekati 0) maka semakin sedikit daya yang bisa kita manfaatkan dari sejumlah daya tampak yang sama. Di sisi lain, faktor daya juga menunjukkan “besar pemanfaatan” dari peralatan listrik di jaringan terhadap investasi yang dibayarkan. Seperti kita tahu, semua peralatan listrik memiliki kapasitas maksimum penyaluran arus, apabila faktor daya rendah artinya walaupun arus yang mengalir di jaringan sudah maksimum namun kenyataan hanya porsi kecil saja yang menjadi sesuatu yang bermanfaat bagi pemilik jaringan.

Baik penyedia layanan maupun konsumen berupaya untuk membuat jaringannya memiliki faktor daya yang bagus (mendekati 1). Bagi penyedia layanan, jaringan dengan faktor daya yang jelek mengakibatkan dia harus menghasilkan daya yang lebih besar untuk memenuhi daya aktif yang diminta oleh para konsumen. Apabila konsumen didominasi oleh konsumen jenis residensial maka mereka hanya membayar sejumlah daya aktif yang terpakai saja, artinya penyedia layanan harus menanggung sendiri biaya yang hanya menjadi daya reaktif tanpa mendapatkan kompensasi uang dari konsumen. Sebaliknya bagi konsumen skala besar atau industri, faktor daya yang baik menjadi keharusan karena beberapa penyedia layanan kadang membebankan pemakaian daya aktif dan daya reaktif (atau memberikan denda faktor daya) tentu saja konsumen tidak akan mau membayar mahal untuk daya yang “tidak termanfaatkan” bagi mereka.

Perbaikan faktor daya
Salah satu cara untuk memperbaiki faktor daya adalah dengan memasang kompensasi kapasitif menggunakan kapasitor pada jaringan tersebut. Kapasitor adalah komponen listrik yang justru menghasilkan daya reaktif pada jaringan dimana dia tersambung. Pada jaringan yang bersifat induktif dengan segitiga daya seperti ditunjukkan pada Gambar 3, apabila kapasitor dipasang maka daya reaktif yang harus disediakan oleh sumber akan berkurang sebesar Q_{koreksi} (yang merupakan daya reaktif berasal dari kapasitor). Karena daya aktif tidak berubah sedangkan daya reaktif berkurang, maka dari sudut pandang sumber, segitiga daya yang baru diperoleh; ditunjukkan pada Gambar 4 garis oranye. Terlihat bahwa sudut \phi mengecil akibat pemasangan kapasitor tersebut sehingga faktor daya jaringan akan naik.



Gambar 4. Perbaikan faktor daya

Rabu, 15 Juni 2011

Power Factor Controller


Untuk merakit sebuah Automatic Capacitor Bank pasti diperlukan alat yang bernama Power Factor (PF) Controler, sering juga disebut Power Factor Regulator atau Regulator saja. Seperti namanya, alat ini berguna untuk menjaga kondisi PF di jaringan agar sesuai dengan PF yang diinginkan. Pada alat tersebut setidaknya akan ditampilkan hasil pengukuran PF jaringan, step yang sudah masuk. Untuk parameter yang lain seperti tegangan, arus, THD, dll mungkin juga ditampilkan tergantung jenis dan merknya. Dan untuk type yang sederhana setting hanya dengan memasukkan nilai C/K, target PF, konfigurasi step, dan time connect / disconnect.Step merupakan parameter yang menunjukkan jumlah output relay yang di kontrol oleh PF Controller. Relay tersebut yang selanjutnya akan memicu salah satu sel capacitor bank. Jumlah step dalam PF Controller bermacam-macam mulai dari 4 step, 6 step, 8 step, 12 step dan 14 step tergantung pembuat. Jika menginginkan 7 step dalam sebuah panel capacitor di pilih PF Controller yang 8 step, kemudian di OFF kan salah satu stepnya. Konfigurasi step juga bisa dipilih sesuai dengan karakteristik jaringan.

Capacitor Bank (part 2)

Jenis Panel Capacitor Bank
 
Ditinjau dari cara kerjanya, capacitor bank dibedakan menjadi 2 :

  1. Fixed type, dengan memberikan beban capasitive yang tetap walaupun terdapat perubahan beban. Biasanya digunakan pada beban langsung seperti pada motor induksi. Nilai yang aman adalah 5% dari kapasitas motor, pertimbangannya adalah kondisi saat tanpa beban.
  2. Automatic type, memberikan beban capasitive yang bervariasi sesuai dengan kondisi beban. Jenis panel ini dilengkapi dengan sebuah Power Factor Controller (PFC) sebagai referensi www.circutor.com . PFC akan menjaga cos phi jaringan sesuai dengan target yang ditentukan. Untuk beban yang berfluktuasi dengan cepat digunakan Static Var Compensator type (SVC) yang menggunakan Thyristor sebagai switchernya. Sedangkan untuk fluktuasi beban yang tidak terlalu cepat digunakan Dynamic Var Compensator dengan menggunakan Magnetic Contactor serta PFC relay sebagi switchernya.

Capacitor Bank (part 1)

Capacitor Bank
Teori Cos phi adalah parameter dasar untuk pengukuran daya di suatu instalasi listrik. Ini merupakan perbandingan antara daya active dan daya reactive. Cos phi = P (kW) / S (kVA)
Daya reactive timbul karena beban listrik yang tidak murni resitive, bisa inductive atau capacitive.
Mayoritas beban pada jaringan listrik adalah beban induktif. Berapa banyak beban induktif yang ada disebuah jaringan listrik, mulai dari transformer, dan yang paling banyak adalah motor listrik. Sehingga beban listrik kebanyakan adalah beban inductive. Untuk menghilangkan/ mengurangi conponen daya inductive ini diperlukan kompensator yaitu capacitor/ capacitor bank.
Hubungan antara daya S (KVA), daya aktif P (KW) dan daya reaktif R (KVAR) adalah sbb :
S^2 = P^2 + R^2
Jadi, untuk menghitung besar capactor bank yang diperlukan sebuah sistem dari nilai daya aktif sudah langsung bisa ditentukan.
Misal daya aktif terukur adalah 450 KW dengan cos j 0.78, maka :
R = ( 100^2 – 78^2)^0.5 X 450
R = (62.3/100) X 450
R = 280.35 KVAR

Electronic Over Current Relays

Overload elektronik EOCR mempunyai fasilitas proteksi yang lebih banyak dan lengkap dibanding thermal overload. Arus yang mengalir pada integated CT di monitor dan diambil dengan rangkaian elektronik yang ada didalamnya.
Data tersebut kemudian diolah oleh MCU yang ada didalamnya untuk acuan proteksi atau display yang dihasilkan.
Beberapa sistem proteksi yang ada pada EOCR adalah sbb :
  • Overload protection, proteksi jika kelebihan beban ampere. EOCR akan trip jika arus motor (In) melebihi setting overload (Is) untuk waktu yang lebih lama dari  O-Time.

Variable Speed Drive (VSD) sistem INVERTER

Aplikasi variable speed banyak  diperlukan dalam industri. Jika sebelumnya banyak dipergunakan system mekanik, kemudian beralih ke motor slip/ pengereman maka saat ini banyak menggunakan semikonduktor. Tidak seperti softstarter yang mengolah level tegangan, inverter menggunakan frekuensi tegangan masuk untuk mengatur speed motor. Seperti diketahui, pada kondisi ideal (tanpa slip)

             
        RPM = 120 . f         
                      P
Dimana:
RPM        : Speed Motor (RPM)
F              : Frekuensi (Hz)
P              : Kutup motor (pole)

Softstarter (2)

Untuk mempermudah pengoperasian softstarter, lebih baik mengunakan external control dengan mempergunakan push button. Line control ini ada yang dry contact atau dengan tegangan. Selain itu diperlukan proteksi tambahan seperti Fuse atau Circuit breaker.
Contrl Softstarter

Softstarter (1)

Soft starter dipergunakan untuk mengatur/ memperhalus start dari elektrik motor. Prisip kerjanya adalah dengan mengatur tegangan yang masuk ke motor. Pertama-tama motor hanya diberikan tegangan yang rendah sehingga arus dan torsipun juga rendah. Pada level ini motor hanya sekedar bergerak perlahan dan tidak menimbulkan kejutan. Selanjutnya tegangan akan dinaikan secara bertahap sampai ke nominal tegangannya dan motor akan berputar dengan dengan kondisi RPM yang nominal.


Komponen utama softstarter adalah thyristor dan rangkaian yang mengatur trigger thyristor. Seperti diketahui, output thyristor dapat di atur via pin gate nya. Rangkaian tersebut akan mengontrol level tegangan yang akan dikeluarkan oleh thyristor. Thyristor yang terpasang bisa pada 2 phase atau 3 phase.


Selain untuk starting motor, Softstarter juga dilengkapi fitur soft stop. Jadi saat stop, tegangan juga dikurangi secara perlahan atau tidak dilepaskan begitu saja seperti pada starter yang menggunakan contactor.

Electro Motor Starter

Untuk menggerakan elektro motor, diperlukan peralatan pendukung yaitu, motor starter atau biasa disebut starter. Saat ini dikenal ada beberapa macam jenis starter. Diantaranya seperti berikut ini. 

Direct On Line (DOL) Starter 
Starter model ini sangat banyak dipakai saat ini, terutama untuk motor motor kecil. Komposisi komponennya terdiri dari satu contactor dan satu proteksi arus dengan TOR atau elektronik. Kelemahan starter model ini adalah kemungkinan timbulnya arus start yang sangat tinggi. biasanya bisa mencapai 6 sampai 7 kali. Pada saat starter ini di start, torsi saat start ini juga sangat tinggi dan biasanya lebih tinggi dari kebutuhan. Ini dapat terlihat adanya lonjakan/ gerakan yang keras saat motor di start. Tingginya torsi start ini juga akan memberikan tekanan lebih pada coupling dan beban.Komponen penyusun starter ini harus mempunyai ampacity yang cukup besar. Perlu diperhitungkan juga arus saat start motor, demikian juga ukuran range overloadnya. 
Star Delta Starter

Starter ini mengurangi lonjakan arus dan torsi pada saat start. Tersusun atas 3 buah contactor yaitu Main Contactor, Star Contactor dan Delta Contactor, Timer untuk pengalihan dari Star ke Delta serta sebuah overload relay. Pada saat start, starter terhubung secara Star. Gulungan stator hanya menerima tegangan sekitar 0,578 (seper akar tiga) dari tegangan line. Jadi arus dan torsi yang dihasilkan akan lebih kecil dari pada DOL Starter. Setelah mendekati speed normal starter akan berpindah menjadi terkoneksi secara Delta. Starter ini akan bekerja dengan baik jika saat start motor tidak terbebani dengan berat.  
Autotransformer Starter
Starter ini pada prinsipnya hampir sama dengan  Star Delta Stater yaitu dengan mengurangi arus dan torsi saat start. Pada Autotranformer terdapat beberapa tap yang dapat menurunkan tegangan line. Starter akan mengatur masuknya tegangan yang mengalir ke motor dimulai dengan tegangan yang paling rendah bertahap sampai ke tegangan normal. Jika Star Delta starter hanya dua step, dengan autotransformer bisa beberapa step. Ini berguna untuk mengurangi lonjakan arus dan torsi saat start. 

Soft Starter
Softstarter sangat berbeda dengan starter lain. Alat ini mempergunakan thyristor sebagai komponen utamanya. Tegangan yang masuk ke motor akan diatur dimulai dengan sangat rendah sehingga arus dan torsi saat start juga rendah. Pada saat start ini tegangan yang masuk hanya cukup untuk menggerakkan beban dan akan menghilangkan kejutan pada beban. Secara perlahan tegangan dan torsi akan dinaikan sehingga motor akan mengalami percepatan kehingga tercapai kecepatan normal. Salah satu keuntungan mempergunakan alat ini adalah kemungkinan dilakukannya pengaturan torsi pada saat yang diperlukan, tidak terpengaruh ada atau tidaknya beban. 

Frequency Drive
Frequency Drive sering disebut juga dengan VSD (Variable Speed Drive), VFD (Variable frequency Drive) atau Inverter. VSD terdiri dari 2 bagian utama yaitu penyearah tegangan AC (50 atau 60 HZ) ke DC dan bagian kedua adalah membalikan dari DC ke tegangan AC dengan frequency yang diinginkan. VSD memanfaatkan sifat motor sesuai dengan rumus sbb : 
RPM = (120.f)/p 
dimana
RPM   : Kecepatan putar/ speed motor (RPM)
F        : Frequency (Hz)
P        : pole  
Jadi dengan mengatur frequency tegangan yang masuk, maka kecepatan motor akan dapat diatur pula. Demikian pula pada saat start, dimulai dengan frequency rendah sampai rated frequency nya hasilnya kecepatan motor akan mengalami percepatan yang lebih halus. 

Reff :- Technical Bulletin Schneider Vol 4 2006- ABB Softstarter Handbook.

Phaseloss on Thermal Overload

Thermal Overload/ thermis mempunyai karakteristik pemutusan (trip) sesuai dengan grafik seperti pada gambar (Class 10). Sebenarnya terdapat berbagai macam grafik inverse karakteristik thermal overload yaitu untuk class 10, Class 15, Class 20, dan Class 30. Sumbu datar menunjukan perbandingan arus yang mengalir (In) terhadap setting arus overload(Is). Sumbu tegak menunjukan waktu (detik) yang diperlukan untuk trip.
Berikut ini kami berikan contoh aplikasi overload untuk stater motor dengan data seperti berikut :
Motor : 40 kW Voltage : 3 phase 380 VAC
FLA : 79 Amp Freq : 50 Hz
Pada saat terjadi phase loss ( salah satu fasa putus ) arus akan naik + 1,73 dari arus nominal. Sebagai contoh adalah seperti berikut: Jika setting overload pada 85 Amp, motor runing In dengan arus 60 Amp kemudian terjadi phaseloss maka :
Arus naik sehingga = 60 X 1,73 = 103 Amp
Multiple of current setting = 103 A / 85A = 1.22
Dari titik pertemuan di grafik (garis merah), maka overload akan trip dalam waktu maksimal 90 detik jika pada kondisi hot start, dan jika motor dalam kondisi cold start maka overload akan trip setelah 400 detik atau lebih dari 6 menit.
Contoh berikutnya :
Data motor :FLA = 79 Amp
Setting ovr (Is) = 85 Amp
Pada saat In motor 51 Amp kemudian terjadi phaseloss maka :
Arus akan naik sehingga = 51 X 1.73 = 87 Amp
Kecepatan trip overload dapat dihitung sbb :
= 87 Amp/85 Amp
= 1,02
Jika refer ke grafik (garis hijau) pada gambar maka overload tidak akan trip.
Thermal Overload/ thermis mempunyai karakteristik pemutusan (trip) sesuai dengan grafik seperti pada gambar (Class 10). Sebenarnya terdapat berbagai macam grafik inverse karakteristik thermal overload yaitu untuk class 10, Class 15, Class 20, dan Class 30. Sumbu datar menunjukan perbandingan arus yang mengalir (In) terhadap setting arus overload(Is). Sumbu tegak menunjukan waktu (detik) yang diperlukan untuk trip.
Berikut ini kami berikan contoh aplikasi overload untuk stater motor dengan data seperti berikut :
Motor : 40 kW Voltage : 3 phase 380 VAC
FLA : 79 Amp Freq : 50 Hz
Pada saat terjadi phase loss ( salah satu fasa putus ) arus akan naik + 1,73 dari arus nominal. Sebagai contoh adalah seperti berikut: Jika setting overload pada 85 Amp, motor runing In dengan arus 60 Amp kemudian terjadi phaseloss maka :
Arus naik sehingga = 60 X 1,73 = 103 Amp
Multiple of current setting = 103 A / 85A = 1.22
Dari titik pertemuan di grafik (garis merah), maka overload akan trip dalam waktu maksimal 90 detik jika pada kondisi hot start, dan jika motor dalam kondisi cold start maka overload akan trip setelah 400 detik atau lebih dari 6 menit.
Contoh berikutnya :
Data motor :FLA = 79 Amp
Setting ovr (Is) = 85 Amp
Pada saat In motor 51 Amp kemudian terjadi phaseloss maka :
Arus akan naik sehingga = 51 X 1.73 = 87 Amp
Kecepatan trip overload dapat dihitung sbb :
= 87 Amp/85 Amp
= 1,02
Jika refer ke grafik (garis hijau) pada gambar maka overload tidak akan trip.
 

Overload Motor Protection

Overload Motor Protection, yang dimaksud motor ini adalah electric motor yang oleh orang awam disebut dinamo. Dan disini dikhususkan yang terjadi pada motor AC 3 phase. Fungsi dari motor ini adalah sebagai penggerak atau untuk mengkonversi energi listrik menjadi mekanik/ gerak seperti lift, conveyor, blower, crusher dll. Dalam dunia industri saat ini peran yang dilakukan motor ini sangat vital. Untuk itu proteksi sangat diperlukan untuk menjaga kelancaran suatu proses.Sistem proteksi motor ini sudah lama dikenal dan berkembang seiring kemajuan teknologi. Mulai dari penggunaan eutic relay, thermal, sampai elektronik. Secara umum sistem kerja alat tersebut dapat dibagi menjadi dua yaitu dengan thermal dan elektronik.
THERMAL OVERLOAD
Sesuai dengan namanya proteksi motor ini menggunakan panas sebagai pembatas arus pada motor. Alat ini sangat banyak dipergunakan saat ini. Biasanya disebut TOR, Thermis atau overload relay. Cara kerja alat ini adalah dengan menkonversi arus yang mengalir menjadi panas untuk mempengaruhi bimetal. Nah , bimetal inilah yang menggerakkan tuas untuk menghentikan aliran listrik pada motor melalui suatu control motor starter (baca motor starter). Pembatasan dilakukan dengan mengatur besaran arus pada dial di alat tersebut. Jadi alat tersebut memiliki range adjustment misal TOR dengan range 1 ~ 3,2 Amp disetting 2,5 Amp. Artinya, kita membatasi arus dengan TOR pada level 2,5 Amp saja.
Bagaimana bila terjadi kelebihan arus/ overload pada motor starter? Seperti contoh di atas, TOR di setting 2,5 Amp dan semisal arus telah mencapai 3 ampere, apa yang kita harapkan ? Starter shut down/ Trip ! Benar, hanya kapan akan trip?? Secepatnya ?? Ini sangat tidak mungkin bila kita menggunakan Thermal Overload/ TOR. Nah…,terus seberapa cepat TOR itu akan trip ?? Dengan menggunakan bimetal sebagai pembatas tentu tidak dapat bereaksi secara cepat terhadap kenaikan arus. Perlu diketahui, TOR di pasaran memiliki beberapa type yang disebut Class. Jadi dengan memilih class yang berbeda maka kecepatan trip TOR akan berbeda pula. Saat ini terdapat TOR dengan Class 10, Class 15, Class 20 dll. Class ini menunjukkan kecepatan trip saat TOR dialiri arus sebesar 6X setting. Semisal, digunakan TOR class 20 dengan setting 10 Amp, saat arus mencapai 60 Amp alat ini akan trip setelah mencapai waktu 20 DETIK !! 6X setting dalam 20 DETIK !! Bagaimana jika kelebihan arus hanya pada 13 Amp saja? Kita bisa menunggu ber jam jam agar trip. Untuk lebih jelasnya mintalah kurva trip seperti pada gambar saat membeli TOR dan hitung kecepatan tripnya. Perlu diketahui kurva TOR adalah logaritmik bukan linier. So, kita tidak perlu lagi menyalahkan keakuratan TOR yang selama ini dipakai.
ELECTRONIC OVERLOAD
Overload electronic ini mempunya 2 karakteristik trip, INVERSE dan DEFINITE. Inverse, ia akan bekerja seperti thermal overload. Perbedaannya adalah kemampuannya untuk menggeser kurva trip. Jadi overload ini selain mempunyai setting arus juga kecepatan trip atau class adjustment. Selain itu dengan menggunakan rangkaian elektronik ia akan tidak mudah dipengaruhi suhu sekitar serta akurasi lebih terjaga. Definite, bekerja dengan pembatasan yang ketat. Dengan karakteristik ini, berapapun besar kelebihan beban ia akan trip setelah mencapai waktu yang ditentukan. Misal seting overload pada 10 amp dengan waktu trip 4 detik. Jika terjadi kelebihan beban lebih dari 10 amp selama lebih dari 4 detik dia akan trip. Kecepatan trip ini tidak tergantung besar arus overload (baik kecil atau besar sama saja).
Dengan menggunakan rangkaian elektronik biasanya alat ini dilengkapi dengan fasilitas proteksi lain seperti phaseloss protection, Lock Rotor Protection, Short Circuit Protection dll. Sebagai referensi bisa ditemukan di www.eocr.com .
Dengan gambaran tersebut di atas, maka kita bisa menentukan kebutuhan overload protection yang diperlukan. Dan perlu di ingat bahwa, terbakarnya motor tidak hanya karena terjadinya overload. Overload hanyalah salah satu dari beberapa fakor penyebab terbakarnya motor. Seberapa tinggi tingkat proteksi motor yang kita perlukan tergantung dengan prioritas kita. Tetapi, overload protection tetaplah mutlak diperlukan dalam sebuah suatu sistem motor starter

Permasalahan Elektro Motor 3 Fasa

Apa yang menyebabkan elektro motor terbakar, korslet, putus atau njebluk ?? Ada beberapa penyebab yang mengakibatkan terbakarnya sebuah elektro motor (selanjutnya disebut elmot), Overload, Single Phassing, Bearing Problem, Terkontaminasi, Rotor Problem, Usia Pakai dan lain lain. Beberapa symtom tersebut akan menimbulkan efek perubahan arus yang mengalir dan “PANAS” bila hal itu terjadi, seperti Overload dan Single Phassing.
Panas ini akan berpengaruh langsung dengan insulasi motor yang mengakibatkan short dan terbakar.Panas juga juga berpengaruh dengan usia elmot. Jika sebuah elmot beroperasi 10 deg C diatas operating temperature, maka usia elmot akan berkurang 50%. Untuk menghindari problem tersebut digunakan elmot protection yang berupa fuse, thermal overload relay (TOR/OCR) yang banyak dipakai dan motor protection jenis lain.
Single Phassing
Single Phassing atau Phasseloss berarti salah satu dari 3 line supply terputus. Kondisi phaseloss merupakan keadaan terburuk dari unbalance voltage.Jika elmot beroperasi saat terjadi phaseloss, ia akan terus berusaha berputar dengan daya yang sama untuk memutar beban. Elmot akan terus berusaha memutar beban sampai motor terbakar atau starter TRIP !
Penyebab terjadinya phaseloss adalah sbb :
1. Loss kontak pada starter (MCCB/NFB, Contactor atau terminal).
2. Thermal Overload relay yang terputus salah satu fasanya.
3. Salah satu fuse terputus.
Jika terjadi phaseloss maka, dua phase yang lain akan dialiri arus setidaknya 1.73X dari arus normal(silakan dihitung dengan persamaan star-delta). Misal untuk elmot dengan aplikasi ringan dibebani 70%, saat terjadi phaseloss arus akan naik menjadi 120% FLA. Misalkan setting overload pada 125% FLA maka “SAY GOOD BYE” pada elmot tersebut.
Voltage Unbalance
Jika tegangan diantara tiga phasa adalah sama, arus yang mengalir akan sama pula disetiap phasanya. NEMA standart merekomendasikan untuk elmot dan generator maksimum unbalance tegangan adalah 1%.Saat terjadi unbalance, arus elmot akan naik dan jika berjalan terus menerus elmot akan terbakar.
Batasan 1% tersebut bisa diatasi dengan menurunkan beban elmot. Jika beban elmot diturunkan maka toleransi unbalance tegangan bisa lebih longgar.
* Saat Unbalance 1%, penurunan beban menjadi 98 %
* Saat Unbalance 2%, penurunan beban menjadi 95 %
* Saat Unbalance 3%, penurunan beban menjadi 88 %
* Saat Unbalance 4%, penurunan beban menjadi 82 %
* Saat Unbalance 5%, penurunan beban menjadi 75 %
Unbalance tegangan bisa disebabkan beberapa hal berikut :
1. Beban Single Phase yang tidak seimbang di setiap phase.
2. Jaringan Delta terputus.3. Terjadi phaseloss di trafo.
4. Tap setting trafo yang tidak tepat.
5. Power Faktor Corecction tidak sama atau off-line.
Adapun untuk mengetahui unbalance tegangan sebagai berikut:
1. Hitung tegangan rata -rata.
Vtot = (Vr + Vs + Vt)/3
2. Cari selisih terbesar antara tegangan rata-rata dengan tegangan line.
Vd = V – Vtot
3. Unbalance % = (Vd/Vtot) X 100%
(Dicuplik dari Cooper Bussman)